

TF90LVDS032 / TF90LVDT032

Quad LVDS Line Receivers with Extended Common Mode

Features

- Extended input common mode voltage range: -7V to 12V
- DC to 400 Mbps / 200 MHz low noise, low skew, low power operation
 - -400 ps (max) channel-to-channel skew
 - -300 ps (max) pulse skew
 - —7 mA (max) power supply current
- On-chip 100Ω input termination minimizes return loss, component count and board space (TF90LVDT032 only)
- Open or undriven fail-safe support (TF90LVDS032)
- LVDS inputs conform to TIA/EIA-644-A standard
- Standard output enable scheme eliminates power consumption when device is not in use
- Guaranteed operation within industrial temperature range-40° to +85°C
- Available in space saving SOIC-16 and TSSOP-16 packages
- Pin and function compatible with DS90LV032A and SN65LVDS32 and SN65LVDS32B

Applications

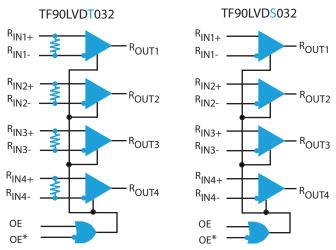
- Digital Copiers
- Wireless Base Stations
- Telecom / Datacom
- Network Routing
- Laser Printers
- LCD Displays

Description

The TF90LVDS032 and TF90LVDT032 are 400 Mbps Quad LVDS (low voltage differential signaling) Line Receivers optimized for high-speed, low power, low noise transmission over controlled impedance (approximately 100Ω) transmission media (e.g. cables, printed circuit board traces, backplanes).

The TF90LVDS032 and TF90LVDT032 accept four LVDS signals and translates them to four LVCMOS signals. Their outputs can be disabled and put in a high-impedance state via two enable pins, OE and OE*.

The TF90LVDS032 and TF90LVDT032 input receivers support wide input voltage range of -7 V to 12 V for exceptional noise immunity. A fail-safe feature sets the outputs to a high state when both inputs are open, or undriven.


The TF90LVDT032 features on-chip 100Ω input termination resistors that minimize input return loss, component count and board space. The TF90LVDS032 differential inputs are without input termination resistors and are suitable for applications requiring custom termination schemes.

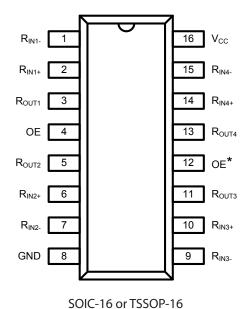
Supply current is 7 mA (max). LVDS outputs conform to the ANSI/EIA/TIA-644-A standard. The TF90LVDS032 and TF90LVDT032 are offered in 16-pin SOIC(N) and TSSOP packages and operate over an extended -40 $^{\circ}$ C to +85 $^{\circ}$ C temperature range.

Function Diagrams

Ordering Information

Year Year Week Week

		10	ai I Cai VVCCR VVCCR
PART NUMBER	PACKAGE	PACK / Qty	MARK
TF90LVDX032-TBU	SOIC-16(N)	Tube / 48	TEYO22TB
TF90LVDX032-TBG	SOIC-16(N)	T&R / 500	TFX032TB Lot ID
TF90LVDX032-6CU	TSSOP-16	Tube / 94	TEYO2266
TF90LVDX032-6CG	TSSOP-16	T&R / 1000	TFX0326C Lot ID


Replace X with S for No Termination, or T for Termination.

www.telefunkensemiconductors.com

Pin Diagram

Quad LVDS Line Receivers with Extended Common Mode

Logic Table

OE	OE OE* R _{IN+} - R _{IN-}		R _{out}
Any other combination		≥ 100 mV	Н
		≤ -100 mV	L
Any other c	Any other combination		Н
0	1	Don't Care	Disabled

Table 1. Output Enables Truth Table

Pin Descriptions

PIN NAME	PIN NUMBER	PIN TYPE	PIN DESCRIPTION
R _{IN1+} , R _{IN1-} ,	2, 1,	LVDS inputs	Non-inverting and inverting LVDS receiver input pins.
R _{IN2+} , R _{IN2-} ,	6, 7,		
R _{IN3+} , R _{IN3-} ,	10, 9,		
R _{IN4+} , R _{IN4-}	14, 15		
R_{OUT1} , R_{OUT2} ,	3, 5,	LVCMOS outputs	Receiver LVCMOS output pins.
R _{OUT3} , R _{OUT4}	11, 13		
OE, OE*	4, 12	LVCMOS inputs	Receiver output enable pins. When OE is high or OE* is low or open, the receiver outputs are enabled. When OE is low and OE* is high, the receiver outputs are disabled.
V _{cc}	16	Power	Power supply pin. Bypass V_{cc} to GND with 0.1 μF and 0.01 μF ceramic capacitors.
GND	8	Power	Ground or circuit common pin.

Absolute Maximum Ratings¹

V _{CC} to GND	0.3V to +4V
Inputs	
OE, OE* to GND	0.3V to $V_{CC} + 0.3V$
R _{IN+} , R _{IN-} to GND	8.0V to +13.0V
$V_{ID} (R_{IN} + \text{to } R_{IN} -) \dots -6V$	to +6V (LVDT -2V to +2V)
Outputs	
R _{OUT} to GND	0.3V to $V_{CC} + 0.3V$
Maximum Package Power Dissipation SOIC-16 (derate 13.8 mW/°C above +2 TSSOP-16 (derate 9.7 mW/°C above +	25 °C)1.7 W
SOIC-16 Thermal Resistance	
θ_{JC}	41 °C/W
θ,,	
5.1	

Quad LVDS Line Receivers with Extended Common Mode

TSSOP-16 Thermal Resistance	
θ_{IC}	29 °C/W
θ,μ,	
Storage Temperature Range	65°C to +150°C
Maximum Junction Temperature	+150°C
Lead Temperature (soldering, 4s)	
ESD Ratings	
HBM ¹	8 kV
MM^2	250 V

1 Human Body Model, applicable standard JESD22-A114-C 2 Machine Model, applicable standard JESD22-A115-A

Recommended Operating Conditions

Symbol	Parameter	Pins	MIN	TYP	MAX	Unit
V _{cc}	Supply Voltage	V _{cc}	3	3.3	3.6	V
V _{IH}	High-level input voltage	OE, OE*	2		V _{cc}	V
V _{IL}	Low-level input voltage	OE, OE*	0		0.8	V
V _{ID}	Differential input voltage	R _{IN+} , R _{IN-}	0.1	0.35	1	V
V _{IN}	Input voltage	R _{IN+} , R _{IN-}	-7		12	V
T _A	Operating free-air temperature	All	-40	25	85	°C

October 2011

¹ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

Over recommended operating conditions (NOTE1), unless otherwise specified. Typical values are $V_{CC} = 3.3V$, $T_A = 25$ °C.

Symbol	Parameter		Conditions	MIN	TYP	MAX	Unit
LVCMOS Inj	put Specifications ((OE, OE* pins)					
V _{IH}	High-level input	t voltage		2.0		V _{cc}	V
V _{IL}	Low-level input	voltage		GND		0.8	V
I _{IH}	High-level input	t current	$V_{CC} = 3.6V$ $V_{IN} = 3.6V$	-10	0	10	μА
I _{IL}	Low-level input	current	$V_{CC} = 0 \text{ or } 3.6V$ $V_{IN} = 0V$	-10	0	10	μА
V_{CL}	Input clamp vol	tage (NOTE2)	$I_{CL} = -18 \text{ mA}, V_{CC} = 0V$	-1.5	-0.9		V
LVCMOS O	tput Specifications	(R _{out} pins)					
V	Output high val	ltago	$I_{OH} = -0.4 \text{ mA}, V_{ID} = 200 \text{ mV}$	2.7	3.2		V
V _{OH}	Output high vol	itage	I _{OH} = -0.4 mA, input open	2.7	3.2		V
V _{OL}	Output low volt	age	$I_{OL} = 2 \text{ mA}, V_{ID} = -200 \text{ mV}$		0.05	0.25	V
I _{os}	Output short cir (NOTE1), (NOTE		Enabled, V _{OUT} = 0V		-50	-100	mA
l _{oz}	Output High-Z current		Disabled, $V_{OUT} = 0V$ or V_{CC}	-10		10	μΑ
LVDS Input	Specifications (R _{IN+} ,	, R _{IN-} pins)					
V _{TH}	Differential inpu	ut high threshold			0	100	mV
V_{TL}	Differential inpu	ut low threshold	V _{ICM} = -7.0V to 12.0V (NOTE4)	-100	0		mV
V _{ID}	Differential inpu	ıt voltage	(NO124)	0.1	0.35	1	V
V_{ICM}	Input common	mode voltage	$V_{ID} = 100 \text{ mV}$	-7.0		12.0	mV
			0V≤V _{IN+} ≤2.4V, V _{IN-} =1.2V	-15		10	μΑ
	Input current	TF90LVDS032	-4V≤V _{IN+} ≤6.4V, V _{IN-} =open	-50		50	μΑ
	input current		-7V≤V _{IN+} ≤12V, V _{IN-} =open	-85		130	μΑ
I _{IN}	$V_{CC} = 0 \text{ or } 3.6V$		0V≤V _{IN+} ≤2.4V, V _{IN-} =open	-30		20	μΑ
		TF90LVDT032	-4V≤V _{IN+} ≤6.4V, V _{IN-} =open	-100		100	μА
			-7V≤V _{IN+} ≤12V, V _{IN-} =open	-140		185	μΑ
C _{IN}	Input capacitance		R _{IN+} or R _{IN-} to GND		4		pF
R _{IN}	Input termination resistor		TF90LVDT032 only		100		Ω
	oly Current Specifica	ations	<u> </u>			,	
I _{cc}	Power supply current		OE = 1 or OE* = 0 Not switching		5	7	mA
I _{ccz}	Power supply cu		OE = 0 and OE* = 1		1	2	mA

NOTE1 Current into device pin is defined as positive. Current out of the device is defined as negative. All voltages are referenced to ground, unless otherwise specified.

NOTE2 This specification is not production tested and is guaranteed by design simulations.

NOTE3 Output short circuit current (I_{os}) is specified as magnitude only. The minus sign indicates direction only. Only one output should be shorted at a time, do not exceed maximum junction temperature specification. Specified for momentary short condition durations only.

NOTE4 Recommended operating conditions for the R_{in+} and R_{in-} pins is over the range of -7.0V to 12.0V. Therefore, caution should be taken not to exceed these values or the maximum Differential Input voltage of 1.0V.

Switching Characteristics

Over recommended operating conditions, unless otherwise specified. Typical values are at $V_{CC} = 3.3V$, $T_A = 25$ °C.

Symbol	Parameter	Conditions	MIN	TYP	MAX	Unit		
LVDS AC Sp	LVDS AC Specifications (NOTES 5, 6 and 7)							
t _{PLH}	Propagation delay, low-to-high		1.3	2.1	3.3	ns		
t _{PHL}	Propagation delay, high-to-low	Figures 1 and 2	1.3	2.1	3.3	ns		
t _r	Rise time	C _L =15pF		0.35	1	ns		
t _f	Fall time	V _{ID} =200mV		0.3	1	ns		
t _{SK(p)}	Pulse skew (NOTE 8)	$V_{ICM} = 1.2V$		50	300	ps		
t _{SK(c-c)}	Channel-to-channel skew (NOTE9)	(NOTE12)		100	400	ps		
t _{SK(p-p)}	Part-to-part skew (NOTE10)				1.5	ns		
t _{PLZ}	Disable time, low-to-high Z	Figures 3 and 4		8	14	ns		
t _{PHZ}	Disable time, high-to-high Z	$R_L = 2K\Omega$ $C_L = 15pF$		8	14	ns		
t _{PZL}	Enable time, high Z-to-low	$V_{ID}=200$ mV $V_{ICM}=1.2$ V		8	14	ns		
t _{PZH}	Enable time, high Z-to-high	(NOTE12)		8	14	ns		
f _{MAX}	Maximum operating frequency (NOTES 11 and 12)	Figure 1 C _L =15pF		200		MHz		

NOTE5 Generator output characteristics (unless otherwise specified): f = 1 MHz, $Z_0 = 50\Omega$, $t_s < 1$ ns. $t_s < 1$ ns.

NOTE6 All input voltages are for one channel unless otherwise specified. Other inputs are set to GND.

NOTE7 Switching Characteristic specifications are not production tested and are guaranteed by statistical analysis of characterization data.

NOTE8 $t_{SK(p)}$ pulse skew, is the magnitude difference in propagation delay time between the positive going edge and the negative going edge of the same channel $(t_{SK(p)} = |t_{PLH} - t_{PHL}|)$.

NOTE9 $t_{SK(c-c)}$, channel-to-channel skew, is the difference in propagation delay time between channels on the same device at any operating temperature and supply voltage.

NOTE10 $t_{SK(p-p)}$ part-to-part skew, is the difference in propagation delay time between devices operating at the same power supply voltage and within 5 °C of each other within the operating temperature range.

NOTE11 Generator output characteristics for the f_{MAX} : $Z_0 = 50\Omega$, $t_r = t_f < 1$ ns, 50% duty cycle, 1.05V to 1.35V peak to peak. Output Criteria: 60%/40% duty cycle, VOL (max 0.4V), VOH (min 2.7V).

NOTE12 The capacitive load C₁ includes test fixture, probe and lumped capacitance.

Test Circuits and Timing Diagrams

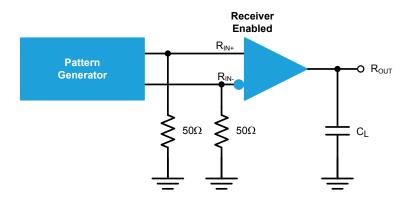


Figure 1. Receiver Propagation Delay and Transition Time Test Setup

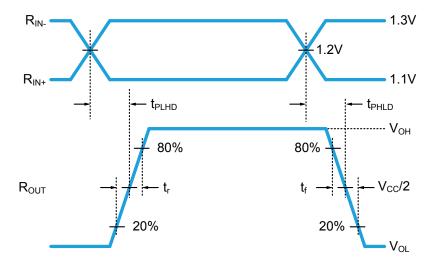
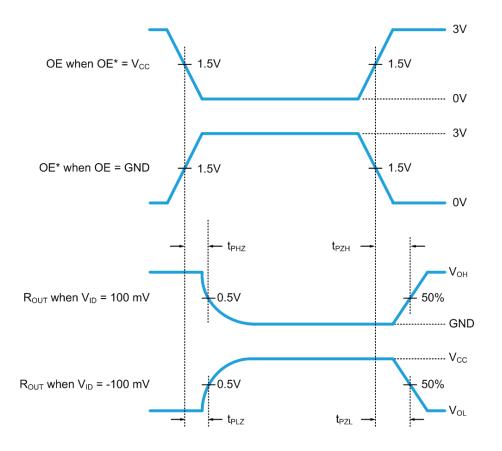
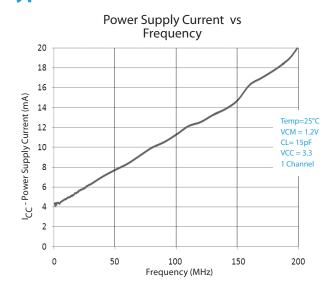
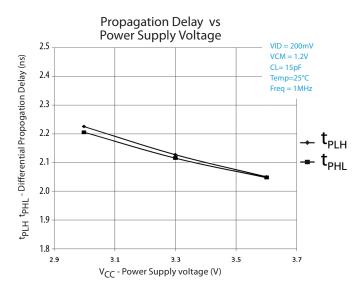
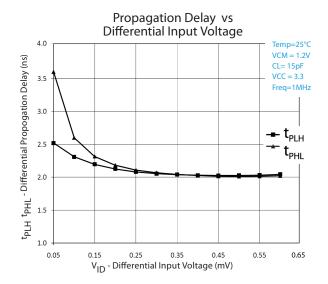


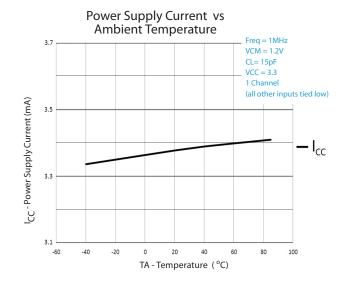
Figure 2. Receiver Propagation Delay and Transition Time Waveforms

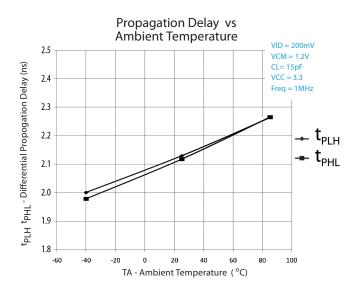
Test Circuits and Timing Diagrams

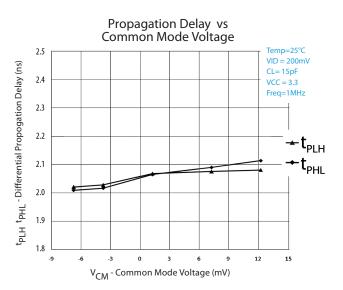
Figure 3. Receiver High-Z Delay Test Setup

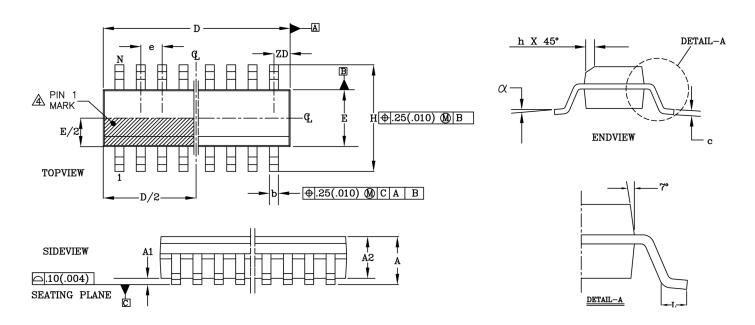

Figure 4. Receiver High-Z Delay Waveforms


Typical Performance Curves





Quad LVDS Line Receivers with Extended Common Mode

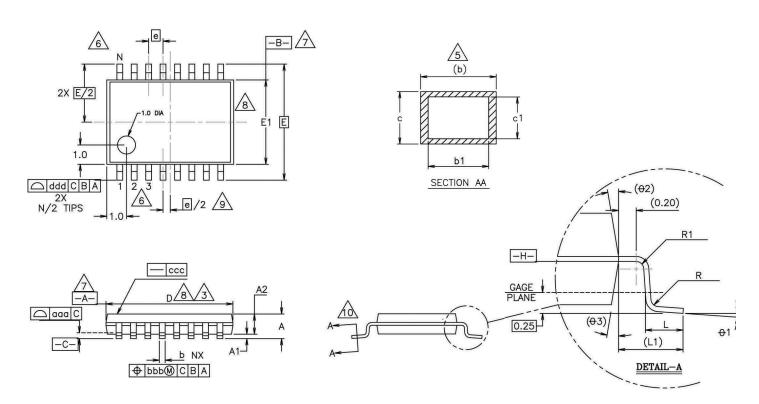


Package Dimensions (SOIC-16)

닐	SOIC-16LD			
SYMBOL	MILLIMETERS			
SY	MIN	MAX		
A1	0.10	0.25		
В	0.36	0.46		
С	0.19	0.25		
D	9.80	9.98		
E	3.81	3.99		
е	1.27	BSC		
Н	5.80	6.20		
h	0.25	0.50		
L	0.41	1.27		
A	1.52	1.72		
α	0°	8°		
ZD	0.51	REF		
A2	1.37	1.57		

B .014 .018 C .0075 .0098 D .386 .393 E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050				
A1.0040 .0098 B .014 .018 C .0075 .0098 D .386 .393 E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°)L	SOIC-16LD		
A1.0040 .0098 B .014 .018 C .0075 .0098 D .386 .393 E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°	MBC	INC	HES	
B .014 .018 C .0075 .0098 D .386 .393 E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°	SY	MIN	MAX	
C .0075 .0098 D .386 .393 E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°	A1	.0040	.0098	
D .386 .393 E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°	В	.014	.018	
E .150 .157 e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°	С	.0075	.0098	
e .050 BSC H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .066 α 0° 8°	D	.386	.393	
H .2284 .2440 h .0099 .0196 L .016 .050 A .060 .068 α 0° 8°	E	.150	.157	
h .0099 .0196 L .016 .050 A .060 .068 α 0° 8°	е	.050 I	BSC	
L .016 .050 A .060 .068 α 0° 8°	Н	.2284	.2440	
A .060 .068 α 0° 8°	h	.0099	.0196	
α 0° 8°	L	.016	.050	
α σ σ	Α	.060	.068	
ZD .020 REF	α	0°	8°	
	ZD	.020 1	REF	
A2 .054 .062	A2	.054	.062	

NOTES :


- 1. LEAD COPLANARITY SHOULD BE 0 TO 0.10MM (.004") MAX.
- 2. PACKAGE SURFACE FINISHING: (2.1) TOP: MATTE (CHARMILLES #18~30).
- 3. ALL DIMENSIONS EXCLUDING MOLD FLASHES AND END FLASH FROM THE PACKAGE BODY SHALL NOT EXCEED 0.25MM (.010*) PER SIDE(D).

⚠ DETAIL OF PIN #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.

October 2011

Package Dimensions (TSSOP-16 Please contact support@telekenfunsemi.com for availability)

	0.65m	N O T				
	MIN	NOM	MAX	Ė		
Α			1.10			
A1	0.05		0.15			
A2	0.85	0.90	0.95			
L	0.50	0.60	0.75			
A A1 A2 L R	0.09					
R1	0.09					
Ь	0.19		0.30	5		
b1	0.19	0.22	0.25			
С	0.09		0.20			
c1	0.09		0.16			
-0 1	0.		8°			
L1						
aaa						
bbb		0.10				
ccc		0.05				
ddd		0.20				
е						
0 2						
0 3	3					
NC	TE					
D	4.90	5.00	5.10			
E1 E e	4.30					
E	(
е	0					
Ν						

NOTES:

- 1 ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2 DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.

dimension 'D' does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 per side.

DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

DIMENSION 'b' DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE 'b' DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD IS 0.07 MM FOR 0.5 MM PITCH PACKAGES.

6 TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

 $\sqrt{7}$ datums -A- and -B- to be determined at datum plane -H-

 $\sqrt{8}$ dimensions 'd' and 'e1' are to be determined at datum plane $\boxed{-H-1}$

THIS DIMENSION APPLIES ONLY TO VARIATIONS WITH AN EVEN NUMBER OF LEADS PER SIDE. FOR VARIATION WITH AN ODD NUMBER OF LEADS PER SIDE, THE "CENTER" LEAD MUST BE COINCIDENT WITH THE PACKAGE CENTERLINE, DATUM A.

CROSS SECTION A-A TO BE DETERMINED AT 0.10 TO 0.25 MM FROM THE LEADTIP.

- 11 THIS VARIATION IS NOT REGISTERED WITH JEDEC.
- 12 PACKAGE SURFACE FINISHING:
 - (I) TOP: MATTE (CHARMILLES: #18~30)
 - (II) BOTTOM: MATTE (CHARMILLES: #12~27)

Notes

Ouad LVDS Line Receivers with Extended Common Mode

Important Notice

Telefunken Semiconductors PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TS PRODUCTS ARE SPECIFICALLY DESIGNATED BY Telefunken Semiconductors FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF Telefunken Semiconductors PRODUCTS WHICH Telefunken Semiconductors HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

Telefunken Semiconductors assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using Telefunken Semiconductors products.

Resale of Telefunken Semiconductors products or services with statements different from or beyond the parameters stated by Telefunken Semiconductors for that product or service voids all express and any implied warranties for the associated Telefunken Semiconductors product or service. Telefunken Semiconductors is not responsible or liable for any such statements.

© 2011 Telefunken Semiconductors. All rights reserved. Information and data in this document are owned by Telefunken Semiconductors and may not be edited, reproduced, or redistributed in any way without written consent from Telefunken Semiconductors.

For additional information please contact support@telefunkensemi.com or visit www.telefunkensemiconductors.com