
TF21173L

Triple High-Side Gate Driver

Features

- Three independently controlled high-side gate drivers
- Three floating channels operating in bootstrap to 600V
- Drives three N-channel MOSFETs or IGBTs
- Each driver 500mA sink/250mA source output current capability
- Outputs tolerant to negative transients
- Three schmitt triggered logic input (5V) with internal pull down
- Wide logic supply: 10V to 20V
- Undervoltage lockout
- Extended temperature range: -40°C to +125°C

Typical Application

Description

The TF21173L is a triple high-side gate driver with three high voltage, high speed gate drivers capable of driving three N-channel MOSFET's and IGBT's in bootstrap operation. Telefunken's high voltage process enables the TF21173L to switch to 600V. Each gate driver is independently controlled with a standard CMOS logic input. The driver output features high pulse current buffers designed for minimum driver cross conduction.

Telefunken's unique design integrating three high voltage floating wells in one IC allows for a more compact triple half bridge converter. Using the TF21173L triple high-side high voltage drivers with separate lower cost low-side drivers, also produces a more cost effective solution overall. The TF21173L is offered in 28-pin SOIC package as well as direct die sales and operates over an extended -40°C to +125°C range.

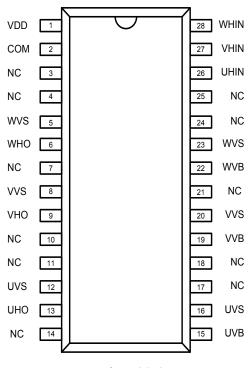
Applications

- Motor Drive Modules
- Motor Controls
- DC-DC Converters
- AC-DC Inverters

SOIC-28

Ordering Information

ordering information			ear Year Week Week
PART NUMBER	PACKAGE	PACK / Qty	MARK
TF21173L-TLS	SOIC-28	Tube / 25	VYWW TF TF21173L Lot ID
TF21173L-TLQ	SOIC-28	T & R / 1500	VYWW TF21173L Lot ID


www.tfsemi.com

Triple High-Side Gate Driver

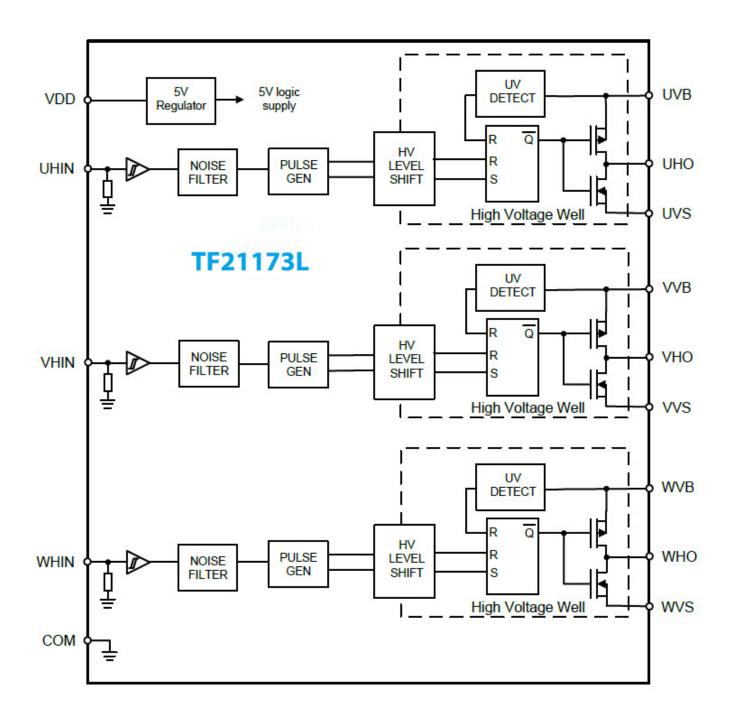
Pin Diagrams

Top View: SOIC-28

TF21173L

Pin Descriptions

PIN NAME	PIN DESCRIPTION
VDD	Logic and gate drive supply
(U, V, W) HIN	Logic input for gate driver output (HO), in phase with HO
СОМ	Logic & Low-side ground
NC	No Connect
(U, V, W) VS	High-side floating supply return
(U, V, W) HO	High-side gate drive output
(U, V, W) VB	High-side floating supply



TF21173L

Functional Block Diagram

TF21173L

Triple High-Side Gate Driver

Absolute Maximum Ratings (NOTE1)

V_{B} - High side floating supply voltage0.3V to +624V
V_s - High side floating supply offset voltage V_B -24V to V_B +0.3V
V_{HO} -Highside floating output voltageV _s -0.3V to V _B +0.3V
V _{DD} -Logicsupplyvoltage0.3Vto+21.5V
V _{IN} - Logic input voltage0.3V to 5.5V
$d\dot{V}_{s}/dt$ - Allowable offset supply voltage transient

NOTE1 Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

P_{D} - Package power dissipation at $T_{A} \leq 25 \text{ °C}$	
SOIC-28 (W)	2.3W
T _J - Junction operating temperature	+150 °C
T _L - Lead Temperature (soldering, 10 seconds)	+300 °C
T _s - Storage temerature	55 to 150 °C

SOIC-28(W) Thermal Resistance (NOTE2)

θ _{JC}	C/W
θ _{JA} 60 °	C/W

NOTE2 When mounted on a standard JEDEC 2-layer FR-4 board.

Recommended Operating Conditions

Symbol	Parameter	MIN	MAX	Unit
$V_{_{\rm B}}({\rm U},{\rm V},{\rm W})$	High side floating supply absolute voltage (U, V, W)	V _s + 12	V _s + 20	V
Vs	High side floating supply offset voltage (U, V, W)	-6	600	V
V _{HO}	High side floating output voltage (U, V, W)	Vs	V _B	V
V _{DD}	Logic supply voltage (U, V, W)	10	20	V
V _{IN}	Logic input voltage (U, V, W)	0	5	V
T _A	Ambient temperature (U, V, W)	-40	125	°C

TF21173L

Triple High-Side Gate Driver

DC Electrical Characteristics (NOTE3)

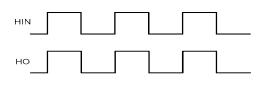
Symbol	Parameter	Conditions	MIN	ТҮР	MAX	Unit
V _{IH}	Logic "1" input voltage		2.6			V
V _{IL}	Logic "0" input voltage				1.1	
V _{OH}	High level output voltage		14.5	15		
V _{ol}	Low level output voltage			0	0.5	
I _{LK}	Offset supply leakage current	VB = VS = 600			50	
I _{BSQ}	Quiescent V _{BS} supply current	V _{IN} =0V, 5V		60	100	- μΑ
I _{DD}	Quiescent V _{DD} supply current	V _{IN} =0V, 5V		330	600	
I _{ODD}	V _{DD} operating current	V _{IN} =20KHz		330	600	
I _{IN+}	Logic "1" input bias current	$V_{IN} = 5V$		1000	1500	
I _{IN-}	Logic "0" input bias current	V _{IN} =0V			1.0	
V_{BSUV+}	V _{BS} supply under-voltage positive going threshold		9.5	10.5	11.5	
V _{BSUV-}	V _{BS} supply under-voltage negative going threshold		8.5	9.5	10.5	V
V _{BSHYS}	V _{BS} supply under-voltage hysteresis			1		1
R _{IN}	Input pull-down resistance			5		kΩ
I _{O+}	Output high short circuit pulsed current	$V_{o} = 0V, V_{IN} = Logic '1'$ PW $\leq 10 \ \mu s$	200	250		
I ₀₋	Output low short circuit pulsed current	$V_{o} = 15V, V_{IN} = Logic '0'$ PW $\leq 10 \ \mu s$	400	500		mA

 $V_{BIAS}(V_{DD}, V_{BS}) = 15V$, unless otherwise specified. $T_A = 25 \text{ °C}$, otherwise -40°C< $T_A < 150 \text{ °C}$

NOTE3 The $V_{IN} V_{TH}$ and I_{IN} parameters are referenced to COM and are applicable to the logic input HIN. The V_{0} and I_{0} parameters are referenced to COM and are applicable to output pin H0.

NOTE4 Operational for negative transients on Vs with a 50ns pulse width. Guaranteed by design.

TF21173L


Triple High-Side Gate Driver

AC Electrical Characteristics

 V_{BIAS} (V_{DD} , V_{BS}) = 15V, C_{L} = 1000pF, unless otherwsie specified. T_{A} = 25 °C , otherwise -40°C < T_{A} < 150 °C

Symbol	Parameter	Conditions	MIN	ТҮР	МАХ	Unit
t _{on}	Turn-on propogation delay	$V_s = 0V$	420	600	780	
t _{off}	Turn-off propogation delay	$V_s = 0V \text{ or } 600V$	280	410	540	
t _r	Turn-on rise time			70	120	- ns
t _f	Turn-off fall time			30	60	
t _{on} -filter	Turn-on filter time		280	400	520	
t _{off} -filter	Turn-off filter time		140	200	260	

Timing Waveforms

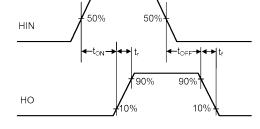
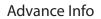



Figure 1. Input / Output Timing Diagram

TF21173L

Triple High-Side Gate Driver

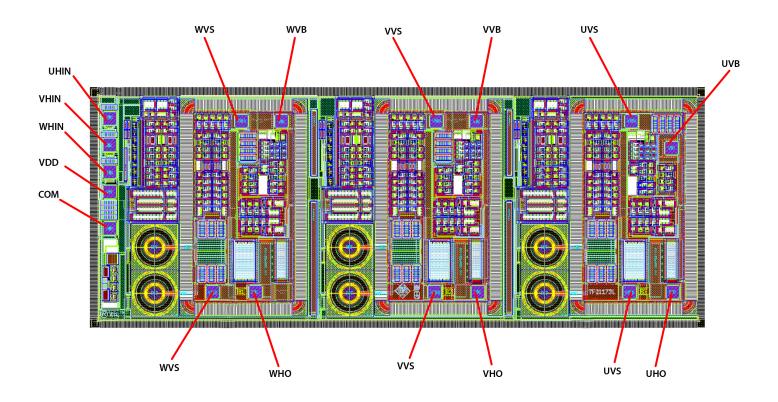
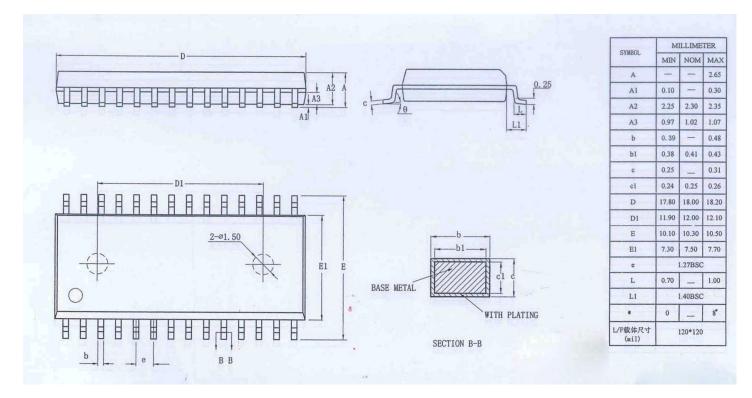


Figure 3. Die Bond Diagram. Die Size is 4800µm x 1750µm.



TF21173L

Triple High-Side Gate Driver

Package Dimensions (SOIC-28)

Please contact support@tfsemi.com for package availability.

Notes

TF21173L

Triple High-Side Gate Driver

Important Notice

TF Semiconductor Solutions (TFSS) PRODUCTS ARE NEITHER DESIGNED NOR INTENDED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS UNLESS THE SPECIFIC TFSS PRODUCTS ARE SPECIFICALLY DESIGNATED BY TFSS FOR SUCH USE. BUYERS ACKNOWLEDGE AND AGREE THAT ANY SUCH USE OF TFSS PRODUCTS WHICH TFSS HAS NOT DESIGNATED FOR USE IN MILITARY AND/OR AEROSPACE, AUTOMOTIVE OR MEDICAL DEVICES OR SYSTEMS IS SOLELY AT THE BUYER'S RISK.

TFSS assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using TFSS products.

Resale of TFSS products or services with statements different from or beyond the parameters stated by TFSS for that product or service voids all express and any implied warranties for the associated TFSS product or service. TFSS is not responsible or liable for any such statements.

©2014 TFSS. All Rights Reserved. Information and data in this document are owned by TFSS wholly and may not be edited, reproduced, or redistributed in any way without the express written consent from TFSS.

For additional information please contact support@tfsemi.com or visit www.tfsemi.com